Стенд для дистанционного диагностирования технического состояния трубопроводов

Р.Н. Сайфутдинов, заместитель директора по управлению проектами, ООО ИЦ «Энергопрогресс»; к.т.н. Д.С. Бальзамов, доцент, ФГБОУ ВО «КГЭУ», г. Казань

Введение

Анализ причин аварий в тепловых сетях показывает, что из всей совокупности факторов, ведущих к нарушению герметичности линейной части этих сооружений, главную роль играют дефекты различного происхождения, ведущие к потере теплоносителя и снижению надёжности теплоснабжения потребителей. Образование дефектов возможно на всех этапах жизненного цикла трубопровода: при производстве труб, при проведении строительно-монтажных работ, в процессе эксплуатации.

Трубопровод является труднодоступным подземным сооружением большой протяжённости, поэтому для обеспечения безопасной эксплуатации трубопроводов, и, соответственно, снижения затрат, необходимо реализовывать комплекс мер по совершенствованию технического обслуживания и ремонта трубопроводов, основанных на проведении систематического контроля трубопроводной системы.

До середины 90-гг. XX столетия главным методом оценки состояния трубопровода были предпусковые гидравлические испытания повышенным давлением. Однако такие испытания были не в состоянии выявить все дефекты, возникающие при эксплуатации трубопроводов. Параметры отдельных дефектов оказывались не столь значительными, чтобы явиться причиной разрушений в процессе «опрессовки», но достаточными для того, чтобы эти дефекты развивались под действием эксплуатационных факторов и служили причиной аварийных ситуаций в пределах нормативного срока службы трубопровода.

На современном этапе актуально проводить диагностическое обследование и оценку опасности выявленных дефектов без вскрытия протяжённых участков трубопровода на основе методов и средств неразрушающей диагностики состояния металла, в частности, внутритрубной диагностики. Полученная при этом информация позволяет достоверно оценивать техническое состояние трубопроводов, определять безопасные технологические режимы, устанавливать необходимость и очерёдность вывода участков трубопроводов в ремонт. Кроме того, наличие подобной информации позволяет прогнозировать остаточный ресурс трубопроводов и достоверно планировать сроки капитального ремонта [2].

Применение внутритрубной диагностики особо актуально для трубопроводов, проложенных в местности с плотной застройкой, под магистральными трассами и т.п.

На сегодняшний день существует достаточно много методов внутритрубной диагностики, которые активно и с успехом используют крупнейшие теплоснабжающие организации.

На данный момент определены участки для внутритрубного диагностирования АО «Татэнерго» «Казанские тепловые сети», где прорабатывается вопрос применения различных методов диагностики, поэтому положительный опыт коллег будет весьма актуален. В этой связи авторами проанализированы методы, которые давно используют в теплосетевых компаниях, в частности, Москвы и Санкт-Петербурга, а также новейшие разработки, применяющиеся в смежных отраслях, но пока ещё не получившие такого широкого распространения в теплоснабжении.

Методы неразрушающего контроля трубопроводов

Так, в ПАО «МОЭК» активно применяется внутритрубная диагностика, основанная на методе акустического резонанса. Внутритрубный инспекционный прибор (ВТИП) представлен на рис. 1. Основное преимущество данного метода – это высокая скорость диагностирования; кроме того, конфигурация устройства позволяет составить карту остаточных толщин трубопровода по всей длине обследуемого участка с развёрткой на 360°.

Рисунок 1. ВТИП методом акустического резонанса.

В ОАО «Теплосеть Санкт-Петербурга» среди прочего была применена внутритрубная диагностика магнитным методом переменного намагничивания (ММК) [1]. Внутритрубный диагностический комплекс (ВТДК) представлен на рис. 2. Основным преимуществом ВТДК является совмещение метода ММК и ультразвукового метода.

Рисунок 2. ВТДК методом переменного намагничивания.

Стоит также отметить, что ВТДК методом переменного намагничивания в октябре 2016 г. включён в Госреестр средств измерений РФ.

В таблице представлено сравнение вышеперечисленных методов внутритрубной диагностики.

Многие методы внутритрубной диагностики разрабатывались изначально для газовой и нефтяной отраслей, где они успешно применяются. Некоторые из них уже адаптированы для тепловых сетей.

Так в газовой и нефтяной отраслях нашла широкое распространение внутритрубная диагностика методом электромагнитно-акустического преобразования (ЭМАП), заключающемся в трансформации электромагнитных волн в упругие акустические. Как и в контактных ультразвуковых методах контроля, при дефектоскопии с применением ЭМАП используют преимущественно два способа генерации и регистрации ультразвуковой волны – импульсный и резонансный (рис. 3).

Рисунок 3. Диагностический снаряд, использующий метод ЭМАП.

Таблица. Сравнительный анализ методов внутритрубной диагностики.

Показатель Метод
Магнитный метод контроля
с переменным намагничиванием основного металла трубопроводов
Технология акустического резонанса
(ультразвуковой метод)
Скорость сканирования, м/ч 90 (визуальное обследование)

Для реализации импульсного метода, наиболее часто применяемого для целей диагностики, в основном применяют те же электронные блоки, что и в традиционных ультразвуковых приборах, в которых возбуждение и приём ультразвука осуществляется с помощью пьезопреобразователей. Различие заключается в том, что вместо пьезоэлемента используется катушка индуктивности и имеется устройство для возбуждения поляризующего магнитного поля. В результате взаимодействия силы Лоренца и магнитострикции с металлической поверхностью возникает акустическая волна, распространяющаяся в стенке трубы. В данном случае обследуемый материал сам является преобразователем.

Побочным эффектом разработки внутритрубных инспекционных снарядов с использованием ЭМАП оказалась их способность выявлять состояние изоляционного покрытия. При этом по характеру зарегистрированных сигналов можно разделить состояние изоляционного покрытия трубопровода на категории:

• отслоение без нарушения целостности;

• нарушение целостности (отсутствие) изоляционного покрытия.

Сейчас ЭМАП рассматривается как перспективный метод для применения в диагностике тепловых сетей.

Из числа относительно новых методов диагностики трубопроводов можно отметить также бесконтактный магнитометрический метод, основанный на эффекте Виллари (магнитоупругий эффект) – изменении электрического сопротивления материала под действием внешнего магнитного поля.

Аппаратно-программный магнитометрический комплекс, разработанный с применением последних российских разработок, регистрирует аномалии магнитного поля трубопровода, вызванные различными дефектами (включая напряжения в металле, коррозию, несанкционированные врезки и т.д.).

Из достоинств метода можно отметить:

• не требует остановки или снижения объёмов транспортировки продукта;

• высокая производительность – до 20 км/день;

• диагностика участков, недоступных для внутритрубного метода.

К недостаткам метода можно отнести:

• влияние посторонних помех на погрешность измерения, в связи с этим метод применим только на удалённых от городской инфраструктуры магистралях;

• требуется наличие давления в трубопроводе не менее 1 МПа.

Заключение

Большая протяжённость теплопроводов АО «Татэнерго» и разнообразие применяемых диаметров труб говорит об актуальности применения внутритрубной диагностики неразрушающими методами, однако при выборе того или иного метода необходима комплексная оценка целесообразности его применения.

Многообразие методов диагностики трубопроводов связано не только с разнообразием самих трубопроводов, но и с условиями их эксплуатации. И очевидно, что не может существовать универсального метода диагностики, пригодного для любых условий и дающего наиболее полную и достоверную характеристику технического состояния тепловых сетей. Не менее актуальны в данное время и вопросы экономического обоснования.

На первом этапе анализа рассматривались, прежде всего, самые распространённые и проверенные способы диагностики. Так, согласно данным технико-коммерческого предложения, для двух участков трубопровода ПАО «Татэнерго» «Казанские тепловые сети» протяжённостью 1060 м (диаметром 720, 820 и 1020 мм) общая стоимость работ по диагностике магнитным методом составит 7,7 млн руб. (с учётом командировок и прочих расходов). Продолжительность работ – 95 рабочих дней.

Финансовые затраты и затраты по времени для акустического метода оказались сопоставимы с затратами на диагностику магнитным методом.

О результатах выбора и проведённого обследования будет рассказано в следующих статьях.

Литература

2. А.А. Абакумов. Принципы построения внутритрубных магнитных интроскопов для сплошной диагностики трубопроводов тепловых сетей // Новости теплоснабжения, № 2 (90), 2008.

Методы технического диагностирования промысловых трубопроводов для оценки технического состояния

Рубрика: Технические науки

Статья просмотрена: 1969 раз

Библиографическое описание:

Техническое диагностирование промысловых трубопроводов позволяет дать объективную оценку их технического состояния и определить срок дальнейшей безопасной эксплуатации трубопровода. В статье рассмотрены методы контроля при техническом диагностировании. Ряд необходимой информации для оценки состояния получают в процессе проведения комплексных работ и методов.

Ключевые слова: техническое диагностирование, методы контроля, промысловый трубопровод, оценка технического состояния.

Technical diagnostics field pipelines enables us to give an objective evaluation of their technical condition and determine the period of further safe operation of the pipeline. The article describes the methods of control when technical diagnosis. A number of the necessary information to assess the status obtained in the course of carrying out complex operations and methods.

Keywords: technical diagnostics, control methods, flowline, assessment of technical conditions.

На сегодняшний день проблема обеспечения промышленной и экологической безопасности является актуальной. Для достижения безопасной эксплуатации промысловых трубопроводов на предприятиях разрабатывается система контроля технического состояния. Одной из основных составляющих системы — техническое диагностирование, как долгосрочное прогнозирование безопасной работы трубопроводов, выявление дефектов и определение остаточного ресурса безопасной работы объекта в целом.

Методы технического диагностирования разделяют на два вида: разрушающие и неразрушающие. Метод разрушающего контроля включает в себя предпусковые или периодические испытания, а также механические испытания образцов металла элементов. Методы неразрушающего контроля предполагают использование физических методов, не влияющих на работу диагностируемого объекта.

Контроль неразрушающими методами подразделяются:

Активными методами являются:

 визуальный и измерительный контроль (ВИК);

 ультразвуковая дефектоскопия (УЗД);

 магнитные (например, метод магнитной памяти ММП);

 метод вихревых токов;

К пассивным относятся:

 метод акустической эмиссии (метод АЭ).

Визуально-измерительный контроль является необходимым условием контроля качества при изготовлении и во время эксплуатации. При данном контроле выявляются следующие дефекты наружной поверхности трубопровода:

 свищи и пористости шва;

 наплывы, поджоги, незаплавленные кратеры;

 несоответствие геометрии швов.

Для определения внутренних дефектов металла и сварных соединений (трещин, непроваров, включений) промысловых трубопроводов в основном применяются ультразвуковой контроль или радиационный, в редких случаях используют магнитный метод контроля.

В основе радиационного метода лежит ионизирующее излучение в форме рентгеновских лучей и гамма-излучения. С одной стороны объекта устанавливают источник излучения — рентгеновскую трубку, с другой — детектор, фиксирующий результаты просвечивания (рентгеновские пленки).

Ультразвуковой метод основан на анализе процесса распространения упругих колебаний в диагностируемом объекте. Ультразвуковые колебания способны отражаться от внутренних неоднородностей среды, что и является основой для данного метода.

Испытаниям на прочность и плотность подвергаются все трубопроводы. Чаще это гидравлическое испытание, реже — пневматическое. При оценке технического состояния промыслового трубопровода, в соответствии с требованиями НТД, проведение испытания на прочность и плотность трубопроводов является основным этапом технического диагностирования, особенно для трубопроводов отработавших нормативный срок службы и подлежащие проведению экспертизы промышленной безопасности, с целью продления срока безопасной эксплуатации.

Пневматическое испытание проводят в случаях:

 если трубопровод или опоры не рассчитаны на заполнение водой;

 если температура окружающей среды отрицательная, а также отсутствие средств, предотвращающие замораживание системы;

 если гидравлическое испытание недопустимо или невозможно по технологическим требованиям.

Контроль за напряженным состоянием отдельных участков промысловых трубопроводов в особо сложных условиях (участки повышенной опасности) возможен с использованием:

 шурфования участков трубопровода;

Проведение шурфования и акустико-эмиссионного метода — определяет необходимость доступа к трубопроводу и непосредственному контакту с элементами трубопровода. Данные методы контроля являются основными в проведении технического диагностирования подземных трубопроводов, в местах с наиболее интенсивным накоплением повреждений, обусловленным агрессивным воздействием грунта.

Проанализировать динамику изменения свойств металла и изоляционного покрытия на подземных участках трубопровода, необходимого для оценки остаточного ресурса, можно только при наличии шурфов. Поэтому на первом этапе технического диагностирования максимальную информацию получают без вскрытия грунта, анализируя техническую документацию и применения активных методов неразрушающего контроля.

Шурфование проводят в местах выявления наиболее значительной аномалии металла или сквозного повреждения изоляции, определенной при неразрушающем контроле, и однозначнов случае их совпадения. При необходимости проводится дополнительное шурфование в местах утечки транспортируемой среды, в местах определенных при анализе технической документации и в местах при совпадении повреждений изоляционного покрытия с местами высокой агрессивности грунта, а так же в местах, где наблюдается наличие блуждающих токов.

При диагностике методом акустической эмиссии (АЭ) контроль направлен на выявление состояния предразрушения элементов трубопровода с помощью определения и анализа шумов, сопровождающих процесс образования и роста трещин.

При проведении контроля возникает акустический сигнал в зоне предразрушения. Анализ полученной информации является основанием для заключения о природе, месте расположения и росте дефекта. Метод АЭ позволяет контролировать весь трубопровод в целом. Для проведения контроля необходим непосредственный доступ к участкам трубопровода для установки датчиков. При отсутствии такой возможности, например при проведении периодического или постоянного контроля подземных магистральных трубопроводов без освобождения их от грунта и изоляции, могут быть использованы волноводы, укрепленные постоянно на контролируемом объекте.

Контроль проводится при создании в трубопроводе напряженного состояния, для этого он подвергается нагружению силой, давлением, температурным полем и т.д.

Основным недостатком метода является сложность выделения полезного сигнала из помех, когда дефект мал. Другим недостатком метода наряду с высокой стоимостью аппаратуры является необходимость высокой квалификации оператора АЭ контроля.

При техническом диагностировании промысловых трубопроводов применяется комплекс методов контроля. Необходимый объем контроля для достоверной оценки технического состояния трубопровода обуславливается рядом факторов и согласуется с владельцем технического устройства на этапе планирования работ.

  1. Кузнецов Н.С. Теория и практика неразрушающего контроля изделий с помощью акустической эмиссии. М.: Машиностроение, 1998. — 197 с.
  2. Справочник инженера по эксплуатации нефтегазопроводов и продуктопроводов / Под ред. Ю.Д.Земенкова. М.: «Инфра Инженерия», 2006. — 821 с.
  3. Трубопроводный транспорт нефти / Под ред. С.М.Вайнштока. В 2 т. М.: Недра, 2004. — Т. 2. — 621 с.
  4. Богданов Е.А. Основы технической диагностики нефтегазового оборудования. М.: Высшая школа, 2006.- 279 с

Диагностирование трубопроводов

Под диагностикой понимается получение и обработка информации о состоянии технических систем в целях обнаружения их неисправностей, выявления тех элементов, ненормальное функционирование которых привело (или может привести) к возникновению неисправностей.

С технологической точки зрения техническая диагностика трубопроводов включает в себя:

1) обнаружение дефектов на трубопроводе;

2) проверку изменения проектного положения трубопровода, его деформаций и напряженного состояния;

3) оценку коррозионного состояния и защищенности трубопроводов от коррозии;

4) контроль за технологическими параметрами транспорта нефти;

5) оценку теплового воздействия трубопроводов на вечную мерзлоту, влияние трубопроводов на гидрологию трассы, учет результатов экологического и технологического мониторинга;

6) оценку результатов испытаний и диагностики трубопроводов, целесообразность проведения переиспытаний и повторной диагностики;

7) интегральную оценку работоспособности трубопроводов, прогнозирование сроков службы и остаточного ресурса трубопровода.

При разработке системы технической диагностики линейной части газопроводов решаются следующие задачи:

Дефекты линейной части магистральных газопроводов подразделяются по виду:

— дефекты изоляционных покрытий;

— дефекты, связанные с изменением проектного положения трубопровода, его деформаций и напряженного состояния.

Дефекты трубы по степени опасности классифицируются по двум категориям:

— дефекты подлежащие ремонту (ДПР);

— дефекты первоочередного ремонта (ПОР).

По назначению диагностирование можно разделить на текущее и прогнозное. При текущем диагностировании определяют состояние трубопровода в какой-то определенный момент времени функционирования. Цель текущего диагностирования — определение правильности и возможности выполнения объектом определенных функции до следующего диагностического воздействия. При прогнозном диагностировании необходимо получить исходные данные для прогнозирования возможных изменении предсказания возможных неисправностей, могущих возникнуть при работе. Поэтому прогнозное диагностирование всегда выполняют в большем объеме, чем текущее.

Функциональное диагностирование дает возможность на работающем трубопроводе выявить нарушения правильности функционирования отдельных узлов и немедленно реагировать путем включения резерва, повторного выполнения операций, перехода на другой режим и т. п. Функциональное диагностирование во многих случаях обеспечивает нормальное или частичное выполнение трубопроводом возложенных на него функций даже при наличии неисправности в нем. Недостаток функционального диагностирования в том, что оно выявляет правильность функционирования только в данный момент и только в данном режиме. При этом могут быть не выявлены неисправности, мешающие работе в другом режиме.

Тестовое диагностирование дает возможность получить полную информацию о техническом состоянии газопровода, дать оценку его работоспособности и исправности, однако его применение возможно только при проведении профилактики или ремонте объекта.

Комбинированное диагностирование представляет собой сочетание функционального и тестового и дает наиболее точное представление о техническом состоянии объекта как при эксплуатации, так и ремонте. При комбинированном диагностировании проверяют не только правильность функционирования, но и исправность и работоспособность объекта.

И тестовые, и функциональные методы применяют при текущем диагностировании, например, при температурном контроле за режимом металла. Для прогнозного диагностирования используют тестовые методы, например: осмотры, проверки, испытания и исследования в период ремонта объекта. Следует отметить, что для получения правильного прогноза, кроме данных диагностирования, следует учитывать ретроспективные данные.

По режиму работы методы диагностирования можно разделить на постоянно действующие (непрерывные), периодически действующие и разовые. Постоянно действующие методы характеризуются постоянным контролем за выбранными параметрами в процессе работы объекта, поэтому этими методами выполняется только функциональное диагностирование. При периодически действующих методах контроль рабочих параметров при функциональном или тестовом диагностировании осуществляется через определенные, строго повторяющиеся промежутки времени, определенные производственными инструкциями. Разовые методы применяют только при необходимости получения дополнительной информации, когда информация от постоянного и периодического контроля недостаточна.

Неавтоматизированное диагностирование отдельных элементов трубопроводов, основанное на правилах эксплуатации, инструкциях, на интуиции обслуживающего персонала, существует и функционирует давно, например: проверка механической прочности элементов оборудования, дефектоскопия и др.

Накопленную и постоянно поступающую информацию о состоянии эксплуатируемого оборудования следует систематизировать. Информация должна характеризовать такие параметры, которые в максимальной мере определяют состояние диагностируемых элементов.

Средства технической диагностики можно использовать как во время ремонтов для проверки его качества, так и в оперативном режиме, они, выполняя роль предвестников отказа, позволяют более эффективно использовать оборудование и сократить потери.

Необходимо совмещать анализ, причины появления дефектов с контролем технологических режимов эксплуатации и другими компонентами, нарушение которых приводит к дефектам.

Методы диагностирования

Методы диагностики технического состояния можно разделить на два типа: разрушающие и неразрушающие. К методам разрушающего контроля обычно относят предпусковые или периодические гидравлические испытания аппаратов, а также механические испытания образцов металла, вырезанных из их элементов. Неразрушающие методы предполагают применение физических методов контроля качества, не влияющих на работоспособность конструкции.

Неразрушающие методы контроля подразделяются на пассивные (интегральные) и активные (локальные).

К активным методам относятся методы, в которых измеряется изменение возбуждаемого физического поля, а к пассивным методам относятся методы, использующие свойства физического поля, возбуждаемого самим контролируемым объектом.

Локальные методы позволяют обнаружить дефект лишь на ограниченной площади, а интегральные методы способны проконтролировать весь объект в целом.

Активными методами являются: визуальный и измерительный контроль, ультразвуковая дефектоскопия, магнитные, радиографические капиллярные, метод вихревых токов, электрический.

К пассивным относятся: тепловизионный, виброакустические методы и акустической эмиссии.

Визуальный и измерительный контроль являются необходимыми условиями контроля качества как при изготовлении, так и при эксплуатации технологического оборудования. Они применяются для выявления следующих дефектов: трещин всех видов и направлений; свищей и пористости наружной поверхности шва; подрезов; наплывов, поджогов, незаплавленных кратеров; несоответствие формы и размеров швов требованиям технической документации и др.

Для определения внутренних дефектов металла и сварных соединений (трещин, непроваров, включений) трубопроводов в основном применяются радиационный и ультразвуковые методы контроля, в более редких случаях – магнитный.

В основе радиационного метода лежит ионизирующее излучение в форме рентгеновских лучей и гамма-излучения. С одной стороны объекта устанавливают источник излучения – рентгеновскую трубку, с другой – детектор, фиксирующий результаты просвечивания (рентгеновские пленки).

Ультразвуковой метод основан на исследовании процесса распространения упругих колебаний в контролируемом объекте. Этот метод основан на способности ультразвуковых колебаний отражаться от внутренних неоднородностей контролируемой среды.

Все трубопроводы подвергаются испытанию на прочность и плотность. Для этого чаще применяют гидравлическое испытание, реже – пневматическое. В соответствии с требованиями НТД проведение гидравлического или пневматического испытания трубопроводов относятся к основным видам работ при оценке их технического состояния. При диагностировании технического состояния длительно проработавшего оборудования, для продления ресурса его безопасной эксплуатации этод метод является обычно завершающим этапом диагностирования.

При испытании на прочность в трубопроводе создают давление, превышающее рабочее. При этом в конструкции трубопровода возникают повышенные напряжения, которые вскрывают его дефектные места.

При испытании на плотность в трубопроводе создают рабочее давление, при котором производят осмотр и обстукивание с целью выявления неплотности системы в виде сквозных трещин, отверстий и т.д.

На плотность трубопроводы испытывают только после предварительного испытания на прочность.

Гидравлический способ наиболее безопасный. Пневматический способ предусматривают в следующих случаях: когда опорные конструкции или трубопровод не рассчитаны на заполнение его водой; если температура воздуха отрицательная и отсутствуют средства, предотвращающие замораживание системы; гидравлический метод недопустим или невозможен по технологическим или другим требованиям.

Вид и способы испытаний, значения испытательных давлений указывают в проекте для каждого трубопровода. Испытанию следует по возможности подвергать весь трубопровод. Обвязочные трубопроводы, непосредственно примыкающие к аппаратам, испытывают одновременно с ними.

Для проведения гидравлического испытания необходимо заполнить изделие рабочей жидкостью. Давление в испытываемом трубопроводе необходимо повышать плавно и с остановками для своевременного выявления возможных дефектов. Во время выдержки не должно наблюдаться падения давления.

Давление нужно плавно снизить до рабочего и выдержать изделие под рабочим давлением в течение времени, необходимого для осмотра трубопровода.

Пневматическое испытание аналогично гидравлическому. В процессе испытания трубопровод заполняется воздухом или инертным газом и поднимается давление. Необходимо постоянно наблюдать за испытываемым трубопроводом. Утечки обнаруживаются по звуку.

Наиболее сложными для технического диагностирования являются подземные трубопроводы.

Оперативную диагностику выполняют посредством обхода обслуживающим персоналом трассы газопровода. При обходе подземных участков утечки газа на трассе газопровода определяются по внешним признакам и приборами. Наибольшие сложности возникают при диагностировании подземных участков, что связано с трудностями доступа к ним и более интенсивным накоплением повреждений, обусловленным агрессивным воздействием грунта.

Получить информацию о динамике изменения свойств металла и изоляционного покрытия на трассе подземных трубопроводов, необходимую для оценки остаточного ресурса, можно только при наличии шурфов, что значительно повышает трудности диагностирования. Поэтому на первом этапе технического диагностирования максимум информации стремятся получить без вскрытия грунта.

• проверка эффективности электрохимической защиты от коррозии путем измерения потенциалов на защищенном участке (в точке подключения установки электрохимической защиты и на границах создаваемой ею защитной зоны);

• проверка состояния изоляции (в том числе наличия сквозных повреждений) производится во всех местах, доступных для визуального контроля; на засыпанных участках газопровода — проверка сплошности изоляционного покрытия с помощью специальных приборов (АНПИ, КАОДИ, C-Scan и др.);

• выявление участков газопровода с аномалиями металла труб с помощью приборов, позволяющих дистанционно установить места коррозийных или иных повреждений труб, а также участки газопровода с местным повышением напряжений.

• определение коррозийной активности грунта и наличия блуждающих токов на участках с наиболее неблагоприятными условиями по этому показателю.

Шурфовое диагностирование

По полученным результатам диагностирования без вскрытия грунта составляется акт и производится шурфовое диагностирование газопровода в базовом шурфе, устраиваемом в период строительства. Если на действующем трубопроводе базовый шурф отсутствует, место базового шурфа выбирается в одном из мест обнаружения наиболее значительной аномалии металла или сквозного повреждения изоляции и однозначно в случае их совпадения (критерием, подтверждающим наличие мест аномалий, является всплеск параметров магнитного поля более чем на 20 % по сравнению с фоновым значением).

Помимо базового при необходимости разрабатывается программа закладки дополнительных шурфов. Основными критериями такой необходимости являются: утечка газа, совпадение показаний приборов проверки состояния изоляции с показаниями определения аномалий металла, результаты анализа технической документации и совпадение повреждений изоляционного покрытия с местами высокой агрессивности грунта, наличие блуждающих токов.

Программа шурфового диагностирования включает:

• определение толщины и внешнего вида изоляционного покрытия (расположение и размеры сквозных повреждений, наличие трещин, бугристость и др.), механической прочности, адгезии (прилипаемости) изоляционного покрытия к металлу трубы, величины переходного электрического сопротивления;

• определение величины коррозийных повреждений трубы, наличие вмятин, рисок и т.п., контроль наружного диаметра и толщины стенки при наличии коррозийных повреждений;

• определение вида и размеров дефектов в сварных швах, если они попали в зону шурфа и при осмотре обнаружены их отклонения от требований нормативных документов;

• определение коррозийной активности грунта и наличия блуждающих токов;

• определение фактических значений временного сопротивления овф и предела текучести отф при толщине стенки 5 мм; более 5 мм — определение ударной вязкости KCU металла, параметров напряженно-деформированного состояния в кольцевом сечении.

Оценку технического состояния газопровода проводят путем сравнения фактических значений параметров технического состояния с предельно допустимыми значениями соответствующих определяющих параметров. При достижении предельного состояния принимают решение о ремонте газопровода или его демонтаже. При наличии запаса производят оценку остаточного ресурса по следующим определяющим параметрам:

• переходному сопротивлению изоляционного покрытия;

• изменению пластичности металла труб в результате старения;

• изменению ударной вязкости (трещиностойкости) в результате старения;

• величине напряженно-деформированного состояния при действии фронтальной (общей) коррозии металла;

• величине язвенной (питтинговой) коррозии металла. Остаточный срок службы принимается наименьшим из рассчитанных по определяющим параметрам.

Метод акустической эмиссии

Метод акустической эмиссии относится к диагностике и направлен на выявление состояния предразрушения трубоопровода путем определения и анализа шумов, сопровождающих процесс образования и роста трещин.

Для регистрации волн акустической эмиссии используют аппаратуру, работающую в широком интервале частот – от кГц до МГц.

При испытании приложение нагрузки приводит к возникновению в зоне предразрушения акустического сигнала. Информация о времени распространения сигнала, его амплитуде, частотном спектре и т.п. воспринимается пьезоэлектрическими акустическими датчиками. Обработка полученной информации служит основанием для заключения о природе, месте расположения и росте дефекта.

Источники акустической эмиссии. Контроль сигналов АЭ

При разрушении почти все материалы издают звук, т. е. испускают акустические волны, воспринимаемые на слух. Большинство конструкционных материалов (например, многие металлы и композиционные материалы) начинают при нагружении испускать акустические колебания в ультразвуковой (неслышимой) части спектра еще задолго до разрушения. Изучение и регистрация этих волн стала возможной с созданием специальной аппаратуры.

Под акустической эмиссией (эмиссия — испускание, генерация) понимается возникновение в среде упругих волн, вызванных изменением ее состояния под действием внешних или внутренних факторов. Акустико-эмиссионный метод основан на анализе этих волн и является одним из пассивных методов акустического контроля. В соответствии с ГОСТ 27655—88 «Акустическая эмиссия. Термины, определения и обозначения» механизмом возбуждения акустической эмиссии (АЭ) является совокупность физических и (или) химических процессов, происходящих в объекте контроля. В зависимости от типа процесса АЭ разделяют на следующие виды:

• АЭ материала, вызываемая динамической локальной перестройкой его структуры;

•АЭ трения, вызываемая трением поверхностей твердых тел в местах приложения нагрузки и в соединениях, где имеет место податливость сопрягаемых элементов;

• АЭ утечки, вызванная результатом взаимодействия протекающей через течь жидкости или газа со стенками течи и окружающим воздухом;

• АЭ при химических или электрических реакциях, возникающих в результате протекания соответствующих реакций, в том числе сопровождающих коррозийные процессы;

• магнитная и радиационная АЭ, возникающая соответственно при перемагничивании материалов (магнитный шум) или в результате взаимодействия с ним ионизирующего излучения;

• АЭ, вызываемая фазовыми превращениями в веществах и материалах.

Таким образом, АЭ — явление, сопровождающее едва ли не все физические процессы, протекающие в твердых телах и на их поверхности. Возможности регистрации ряда видов АЭ вследствие их малости, особенно АЭ, возникающих на молекулярном уровне, при движении дефектов (дислокаций) кристаллической решетки, ограничивается чувствительностью аппаратуры, поэтому в практике АЭ контроля большинства промышленных объектов, в том числе объектов нефтегазовой промышленности, используют первые три вида АЭ. При этом необходимо иметь в виду, что АЭ трения создает шум, приводит к образованию ложных дефектов и является одним из основных факторов, усложняющих применение АЭ метода. Кроме того, из АЭ первого вида регистрируются только наиболее сильные сигналы от развивающихся дефектов: при росте трещин и при пластическом деформировании материала. Последнее обстоятельство придает АЭ методу большую практическую значимость и обусловливает его широкое применение для целей технической диагностики. Целью АЭ контроля является обнаружение, определение координат и слежение (мониторинг) за источниками акустической эмиссии, связанными с несплошностями на поверхности или в объеме стенки объекта контроля, сварного соединения и изготовляемых частей и компонентов. Все индикации, вызванные источниками АЭ, должны быть при наличии технической возможности оценены другими методами неразрушающего контроля.

Регистрация сигнала от источника АЭ осуществляется одновременно с шумом постоянного или переменного уровня. Шумы являются одним из основных факторов, снижающих эффективность АЭ контроля.

После прохождения сигнала через фильтры и усилительный тракт, наряду с трансформацией волн на поверхности контролируемого изделия, происходит дальнейшее искажение первоначальных импульсов источника АЭ. Они приобретают двухполярный осциллирующий характер. Дальнейший порядок обработки сигналов и использования их в качестве информативного параметра определяется компьютерными программами сбора данных и их постобработки, использованными в соответствующей аппаратуре различных производителей. Правильность определения числа событий и их амплитуда будут зависеть не только от возможности их регистрации (разрешающей способности аппаратуры), но и от способа регистрации.

Структура аппаратуры АЭ контроля определяется следующими основными задачами: прием и идентификация сигналов АЭ, их усиление и обработка, определение значений параметров сигналов фиксация результатов и выдача информации. Аппаратура различается степенью сложности, назначением, транспортабельностью, а также классом в зависимости от объема получаемой информации.

Метод АЭ позволяет контролировать всю поверхность объекта контроля. Для проведения контроля должен быть обеспечен непосредственный доступ к участкам поверхности объекта контроля для установки ПАЭ. При отсутствии такой возможности, например при проведении периодического или постоянного контроля подземных магистральных трубопроводов без освобождения их от грунта и изоляции, могут быть использованы волноводы, укрепленные постоянно на контролируемом объекте.

До нагружения объекта проверяют работоспособность аппаратуры и оценивают погрешность определения координат с помощью имитатора. Его устанавливают в выбранной точке объекта и сравнивают показания системы определения координат с реальными координатами имитатора. В качестве имитатора используют пьезоэлектрический преобразователь, возбуждаемый электрическими импульсами от генератора.

Характерными особенностями метода АЭ контроля, определяющими его возможности и область применения, являются следующие:

• метод АЭ контроля обеспечивает обнаружение и регистрацию только развивающихся дефектов, что позволяет классифицировать дефекты не по размерам, а по степени их опасности. При этом большие по размерам дефекты могут попасть в класс неопасных, что значительно снижает потери из-за перебраковки. Одновременно при развитии опасного растущего дефекта, когда его размеры приближаются к критическому значению, амплитуда сигналов АЭ и темп их генерации резко увеличиваются, что приводит к значительному возрастанию вероятности обнаружения такого источника АЭ и повышает надежность эксплуатируемого оборудования;

• чувствительность метода АЭ контроля весьма высока. Он позволяет выявить в рабочих условиях приращение трещины порядка долей миллиметра, что значительно превышает чувствительность других методов. Положение и ориентация объекта не влияют на выявляемость дефектов;

• свойство интегральности метода АЭ контроля обеспечивает контроль всего объекта с использованием одного или нескольких преобразователей АЭ контроля, неподвижно установленных на поверхности объекта;

• метод АЭ контроля обеспечивает возможность проведения контроля объектов без удаления их гидро- или теплоизоляции. Для проведения контроля достаточно вскрыть изоляцию только в местах установки преобразователей, что многократно снижает объем восстановительных работ;

• метод обеспечивает возможность проведения дистанционного контроля недоступных объектов, таких, как подземные и подводные трубопроводы, аппараты закрытых конструкций и т.п.;

• метод позволяет проводить контроль различных технологических процессов и процессов изменения свойств и состояния материалов и имеет меньше ограничений, связанных с их свойствами и структурой;

• при контроле промышленных объектов метод во многих случаях обладает максимальным значением отношения эффективность/стоимость.

Существенным недостатком метода является сложность выделения полезного сигнала из помех, когда дефект мал. Другим существенным недостатком метода наряду с высокой стоимостью аппаратуры является необходимость высокой квалификации оператора АЭ контроля.

Структура аппаратуры АЭ контроля определяется следующими основными задачами: прием и идентификация сигналов АЭ, их усиление и обработка, определение значений параметров сигналов фиксация результатов и выдача информации. Аппаратура различается степенью сложности, назначением, транспортабельностью, а также классом в зависимости от объема получаемой информации.

Наибольшее распространение нашла многоканальная аппаратура, позволяющая наряду с параметрами АЭ определять координаты источников сигналов с одновременной регистрацией параметров испытаний (нагрузка, давление, температура и пр.).

Экспертиза и инженерная диагностика отопления, тепловой сети и водопровода: оценка технического состояния и остаточного ресурса эксплуатации труб, определение возможности дальнейшей эксплуатации

Для того, чтобы определить степень износа, возможность дальнейшей эксплуатации сети, необходимость замены или реновации трубопроводов, проводится техническое обследование инженерных сетей (инженерная диагностика отопления, тепловой сети и водопровода) с оценкой фактического состояния и остаточного ресурса сетей.

В рамках инженерной диагностики выполняется комплекс работ:

Техническое заключение по результатам инженерной диагностики тепловой сети и водопровода включает определение текущего технического состояния трубопроводов и оценку остаточного ресурса, определение возможности дальнейшей эксплуатации, рекомендации.

Диагностика системы отопления, экспертиза теплотрассы

Обследование трубопроводов дает возможность существенно снизить риск возникновения аварийных ситуаций и уменьшить тепловые потери.

Обследование, как правило, включает в себя целый ряд мероприятий, которые предоставляют максимально полную и достоверную информацию о состоянии трубопровода.

Ультразвуковая толщинометрия. Такая диагностика отопления выявляет участки, пораженные коррозией. На основании обследования определяются места, которые требуют срочного ремонта. Ультразвуковой толщиномер MG2-XT (Panametrics, США), предназначен для точного измерения толщины стенки трубопроводов, диапазон измерения составляет от 0.5 до 635 мм. Этим прибором можно провести диагностику на тепловых камерах без масштабных земляных работ и отключения системы. Обследование позволяет также оценить качество выполнения ремонтных работ.

Тепловизионный контроль. Этот метод обследования представляет собой дистанционный осмотр трубопровода в инфракрасном диапазоне. Утечки и другие дефекты системы определяются путем оценки температурного поля. Объект обследуется без вывода из эксплуатации.

Диагностика изоляции. Комплекс электроизмерений дает возможность выявить участки теплотрассы, на которых нарушена изоляция (такое обследование проводиться только на трубопроводах, проложенных без каналов). Своевременное выполнение ремонта на найденных участках с поврежденной изоляцией позволяет снизить аварийность и теплопотери.

Трассировка системы. Такая диагностика тепловой сети выявляет незаконные подключения и дает возможность определить местоположение существующего трубопровода.

По результатам обследования составляет технический отчет.

Инструментальное обследование тепловых и водопроводных сетей

Оценка технического состояния участков сетей, уровня износа, выявление дефектов и скрытых утечек, определение возможности дальнейшей эксплуатации

Статья написана по материалам сайтов: moluch.ru, cyberpedia.su, utechkinet.ru.

»

Это интересно:  Штраф за пересечение сплошной линии в 2019 году
Помогла статья? Оцените её
1 Star2 Stars3 Stars4 Stars5 Stars
Загрузка...
Добавить комментарий

Adblock
detector